Intracellular retention of the two isoforms of the D(2) dopamine receptor promotes endoplasmic reticulum disruption.
نویسندگان
چکیده
The dopamine D(2) receptor exists as a long (D(2a)) and a short (D(2b)) isoform generated by alternative splicing of the corresponding transcript, which modifies the length of the third cytoplasmic loop implicated in heterotrimeric G-protein-coupling. Anatomical data suggested that this segment regulates the intracellular traffic and localization of the receptor. To directly address this question we used a combination of tagging procedures and immunocytochemical techniques to detect each of the two D(2) receptor isoforms. Surprisingly, most of the newly synthesized receptors accumulate in large intracellular compartments, the plasma membrane being only weakly labeled, without significant difference between the two receptor isoforms. Double labeling experiments showed that this localization corresponded neither to endosomal compartments nor to the Golgi apparatus. The D(2) receptor is mostly retained in the endoplasmic reticulum (ER), the long isoform more efficiently than the short one. It is accompanied by a striking vacuolization of the ER, roughly proportional to the expression levels of the two receptor isoforms. This phenomenon is partly overcome by treatment with pertussis toxin. In addition, an intrinsic activity of the D(2) receptor isoforms is revealed by [(35)S]-GTP gamma S binding and cAMP assay, which suggested that expression of weakly but constitutively active D(2) receptors promotes activation of heterotrimeric G protein inside the secretory pathway. This mechanism may participate in the regulation of the cellular traffic of the D(2) receptors isoforms.
منابع مشابه
Evidences on the existence of a new potassium channel in the rough endoplasmic reticulum (RER) of rat hepatocytes
Introduction: we have recently reported the presence of two potassium currents with 598 and 368 pS conductance in the rough endoplasmic reticulum (RER) membrane. The 598 pS channel was voltage dependent and ATP sensitive. However, the 368 pS channel was rarely observed and its identity remained obscure. Since cationic channels in intracellular organelles such as mitochondria and RER play imp...
متن کاملCytoplasmic acidification reduces potassium channel activities in the endoplasmic reticulum of rat hepatocytes
Introduction: Intracellular pH (pHi) regulates essentially all aspects of cellular activities. However, it is unknown how endoplasmic reticulum (ER) potassium channels sense pHi. In this study, we investigate the direct effects of pHi on ER potassium channels. Methods: We used channel incorporation into the bilayer lipid membrane method. L-α-phosphatidylcholine, a membrane lipid, was extrac...
متن کاملAn evidence for a potassium channel in endoplasmic reticulum based on single channel recording in bilayer lipid membrane
Introduction Numerous studies have demonstrated the presence of potassium selective channels in membranes internal organelles. These channels are essential to a large variety of cellular processes including intracellular 2+ a signaling, protein recycling, charge neutralization and cell protection. In contrast to the sarcoplasmic reticulum + here potassium channels have been clearly ...
متن کاملEndoplasmic reticulum stress regulates inflammation in adipocyte of obese rats via toll-like receptors 4 signaling
Objective(s): To explore whether endoplasmic reticulum (ER) stress regulates inflammation in adipose tissue of obese rats via TLR4 signaling. Materials and Methods: Sprague Dawley rats were randomly divided into four groups, and body weight, food intake, and free fatty acids (FFA) were measured. Real-time PCR and Western blot were used to determine mRNA or protein expression of TLR4, TRAF6, IKK...
متن کاملThe Conserved Arginine Cluster in the Insert of the Third Cytoplasmic Loop of the Long Form of the D2 Dopamine Receptor (D2L-R) Acts as an Intracellular Retention Signal
This study examined whether the conserved arginine cluster present within the 29-amino acid insert of the long form of the D₂ dopamine receptor (D2L-R) confers its predominant intracellular localization. We hypothesized that the conserved arginine cluster (RRR) located within the insert could act as an RXR-type endoplasmic reticulum (ER) retention signal. Arginine residues (R) within the cluste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 114 Pt 19 شماره
صفحات -
تاریخ انتشار 2001